Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34835504

RESUMO

Pan-azole resistant isolates are found in clinical and environmental Aspergillus fumigatus (Af) populations. Azole resistance can evolve in both settings, with Af directly targeted by antifungals in patients and, in the environment, Af unintendedly exposed to fungicides used for material preservation and plant disease control. Resistance to non-azole fungicides, including methyl benzimidazole carbamates (MBCs), quinone outside inhibitors (QoIs) and succinate dehydrogenase inhibitors (SDHIs), has recently been reported. These fungicide groups are not used in medicine but can play an important role in the further spread of pan-azole resistant genotypes. We investigated the multi-fungicide resistance status and the genetic diversity of Af populations sampled from tulip field soils, tulip peel waste and flower compost heaps using fungicide sensitivity testing and a range of genotyping tools, including STRAf typing and sequencing of fungicide resistant alleles. Two major clones were present in the tulip bulb population. Comparisons with clinical isolates and literature data revealed that several common clonal lineages of TR34/L98H and TR46/Y121F/T289A strains that have expanded successfully in the environment have also acquired resistance to MBC, QoI and/or SDHI fungicides. Strains carrying multiple fungicide resistant alleles have a competitive advantage in environments where residues of multiple fungicides belonging to different modes of action are present.

2.
Pest Manag Sci ; 77(12): 5576-5588, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34392616

RESUMO

BACKGROUND: Over the past decade, demethylation inhibitor (DMI) and succinate dehydrogenase inhibitor (SDHI) fungicides have been extensively used to control to septoria tritici blotch, caused by Zymoseptoria tritici on wheat. This has led to the development and selection of alterations in the target-site enzymes (CYP51 and SDH, respectively). RESULTS: Taking advantage of newly and previously developed qPCR assays, the frequency of key alterations associated with DMI (CYP51-S524T) and SDHI (SDHC-T79N/I, C-N86S and C-H152R) resistance was assessed in Z. tritici-infected wheat leaf samples collected from commercial crops (n = 140) across 14 European countries prior to fungicide application in the spring of 2019. This revealed the presence of a West to East gradient in the frequencies of the most common key alterations conferring azole (S524T) and SDHI resistance (T79N and N86S), with the highest frequencies measured in Ireland and Great Britain. These observations were corroborated by sequencing (CYP51 and SDH subunits) and sensitivity phenotyping (prothioconazole-desthio and fluxapyroxad) of Z. tritici isolates collected from a selection of field samples. Additional sampling made at the end of the 2019 season confirmed the continued increase in frequency of the targeted alterations. Investigations on historical leaf DNA samples originating from different European countries revealed that the frequency of all key alterations (except C-T79I) has been gradually increasing over the past decade. CONCLUSION: Whilst these alterations are quickly becoming dominant in Ireland and Great Britain, scope still exists to delay their selection throughout the wider European population, emphasizing the need for the implementation of fungicide antiresistance measures. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Ascomicetos , Europa (Continente) , Fungicidas Industriais/farmacologia , Doenças das Plantas , Succinato Desidrogenase/genética , Ácido Succínico , Triazóis
3.
Mol Plant Pathol ; 22(9): 1121-1133, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34258838

RESUMO

Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is one of the most economically important diseases of wheat. Recently, both factors of a gene-for-gene interaction between Z. tritici and wheat, the wheat receptor-like kinase Stb6 and the Z. tritici secreted effector protein AvrStb6, have been identified. Previous analyses revealed a high diversity of AvrStb6 haplotypes present in earlier Z. tritici isolate collections, with up to c.18% of analysed isolates possessing the avirulence isoform of AvrStb6 identical to that originally identified in the reference isolate IPO323. With Stb6 present in many commercial wheat cultivars globally, we aimed to assess potential changes in AvrStb6 genetic diversity and the incidence of haplotypes allowing evasion of Stb6-mediated resistance in more recent Z. tritici populations. Here we show, using targeted resequencing of AvrStb6, that this gene is universally present in field isolates sampled from major wheat-growing regions of the world in 2013-2017. However, in contrast to the data from previous AvrStb6 population studies, we report a complete absence of the originally described avirulence isoform of AvrStb6 amongst modern Z. tritici isolates. Moreover, a remarkably small number of haplotypes, each encoding AvrStb6 protein isoforms conditioning virulence on Stb6-containing wheat, were found to predominate among modern Z. tritici isolates. A single virulence isoform of AvrStb6 was found to be particularly abundant throughout the global population. These findings indicate that, despite the ability of Z. tritici to sexually reproduce on resistant hosts, AvrStb6 avirulence haplotypes tend to be eliminated in subsequent populations.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Variação Genética , Virulência/genética
4.
Mol Ecol ; 30(21): 5318-5327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33706414

RESUMO

The evolution of resistance has been seen across all major classes of xenobiotics, including antimicrobial drugs and agricultural pesticides. This repeated emergence of resistance is a case of phenotypic parallel evolution, but often the parallelism extends to the molecular level too, with multiple species gaining the same mutation in response to the same chemical treatment. We review the degree of repeatability in target-site resistance mutations affecting different classes of site-specific agricultural fungicides used in crop protection, comparing the extent to which resistance in different pathogen species has evolved via the same or different mutations. For all major fungicide target sites, substantial levels of molecular parallel evolution can be seen, with at least one mutation recurring in over 50% of species. Target-site mutations appear to be most repeatable in cytochrome b, target site of quinone-outside inhibitor fungicides, and least predictable for CYP51, target site of the azoles. Intermediate levels of repeatability are seen for the MBC target site ß-tubulin, and the SDHI target site succinate dehydrogenase. Repeatability may be lower where there are selective trade-offs between resistance and pleiotropic fitness penalties, or differing levels of cross-resistance across members of a fungicide class; or where single mutations confer only partial resistance, and epistatic interactions between multiple mutations result in a rugged fitness landscape. This affects the predictive power of in vitro mutation studies, and has practical implications for resistance monitoring strategies and diagnostic methods.


Assuntos
Fungicidas Industriais , Azóis , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas
5.
Phytopathology ; 111(10): 1726-1734, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33703921

RESUMO

Asian grapevine leaf rust, caused by Neophysopella meliosmae-myrianthae and N. tropicalis, is often controlled by quinone outside inhibitor (QoI) and demethylation inhibitor (DMI) fungicides in Brazil. Here, we evaluated the sensitivity of 55 Neophysopella spp. isolates to pyraclostrobin (QoI) and tebuconazole (DMI). To elucidate the resistance mechanisms, we analyzed the sequences of the cytochrome b (CYTB) and cytochrome P450 sterol 14α-demethylase (CYP51) target proteins of QoI and DMI fungicides, respectively. The CYP51 expression levels were also determined in a selection of isolates. In leaf disc assays, the mean 50% effective concentration (EC50) value for pyraclostrobin was about 0.040 µg/ml for both species. CYTB sequences were identical among all 55 isolates, which did not contain an intron immediately after codon 143. No amino acid substitution was identified at codons 129, 137, and 143. The mean EC50 value for tebuconazole was 0.62 µg/ml for N. tropicalis and 0.46 µg/ml for N. meliosmae-myrianthae, and no CYP51 sequence variation was identified among isolates of the same species. However, five N. meliosmae-myrianthae isolates grew on leaf discs treated at 10 µg/ml tebuconazole, and these were further exposed to tebuconazole selection pressure. Tebuconazole-adapted laboratory isolates of N. meliosmae-myrianthae showed an eight- to 25-fold increase in resistance after four rounds of selection that was not associated with CYP51 target alterations. In comparison with sensitive isolates, CYP51 expression was induced in the presence of tebuconazole in three out of four tebuconazole-adapted isolates tested. These results suggest a potential risk for QoI and DMI resistance development in Neophysopella spp.


Assuntos
Vitis , Citocromos b/genética , Íntrons/genética , Doenças das Plantas , Quinonas , Esteróis
6.
Phytopathology ; 111(3): 582-592, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32748733

RESUMO

Eyespot, caused by the related fungal pathogens Oculimacula acuformis and O. yallundae, is an important cereal stem-base disease in temperate parts of the world. Both species are dispersed mainly by splash-dispersed conidia but are also known to undergo sexual reproduction, yielding apothecia containing ascospores. Field diagnosis of eyespot can be challenging, with other pathogens causing similar symptoms, which complicates eyespot management strategies. Differences between O. acuformis and O. yallundae (e.g., host pathogenicity and fungicide sensitivity) require that both be targeted for effective disease management. Here, we develop and apply two molecular methods for species-specific and mating-type (MAT1-1 or MAT1-2) discrimination of O. acuformis and O. yallundae isolates. First, a multiplex PCR-based diagnostic assay targeting the MAT idiomorph region was developed, allowing simultaneous determination of both species and mating type. This multiplex PCR assay was successfully applied to type a global collection of isolates. Second, the development of loop-mediated isothermal amplification (LAMP) assays targeting ß-tubulin sequences, which allow fast (<9 min) species-specific discrimination of global O. acuformis and O. yallundae isolates, is described. The LAMP assay can detect very small amounts of target DNA (1 pg) and was successfully applied in planta. In addition, mating-type-specific LAMP assays were also developed for rapid (<12 min) genotyping of O. acuformis and O. yallundae isolates. Finally, the multiplex PCR-based diagnostic was applied, in conjunction with spore trapping in field experiments, to provide evidence of the wind dispersal of ascospores from a diseased crop. The results indicate an important role of the sexual cycle in the dispersal of eyespot.


Assuntos
Grão Comestível , Doenças das Plantas , Ascomicetos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Reprodução , Esporos Fúngicos
7.
Front Microbiol ; 11: 575045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042088

RESUMO

Downy mildew, caused by Plasmopara viticola, is the main disease affecting vineyards in subtropical Brazil. Here, we collected 94 P. viticola isolates from four organic and conventional vineyards in the two main grape-growing states of Brazil to evaluate the sensitivity to the quinone outside inhibitor (QoI) azoxystrobin by pheno- and genotyping assays. The impact of location, production system and sensitivity to QoI fungicides on the population genetics and structure of P. viticola was determined using 10 microsatellite markers. Cytochrome b sequencing revealed that 28 and 100% of the isolates from vineyards under organic and conventional management carried the G143A mutation, respectively. The G143A mutation was associated with high levels of azoxystrobin resistance. Three out of the 94 isolates analyzed carried the M125I alteration, not previously described in P. viticola, which was associated with a five-fold reduction in azoxystrobin sensitivity compared to wild-type isolates. Haplotype network analysis based on cytochrome b gene sequences suggested that the Brazilian populations are more closely related to the European than the North American population. A total of six haplotypes were identified, with two of them carrying the G143A mutation. Microsatellite analysis revealed high allelic and genotypic variation among the four populations. Population differentiation analyses indicated that state of origin directly influences the population biology of P. viticola, while production system and QoI sensitivity have little effect. Great genetic diversity, sexual reproduction and high levels of admixture were observed in Rio Grande do Sul State. In contrast, populations in São Paulo State were dominated by a few clonal genotypes, and no admixed genotype was detected between the two genetic pools identified in the state. This study raises the hypothesis that winter weather conditions influence the overwinter survival strategy with profound effects in the population biology of P. viticola.

8.
Plant Pathol ; 69(3): 518-537, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32194292

RESUMO

Light leaf spot, caused by the ascomycete Pyrenopeziza brassicae, is an established disease of Brassicaceae in the United Kingdom (UK), continental Europe, and Oceania (OC, including New Zealand and Australia). The disease was reported in North America (NA) for the first time in 2014 on Brassica spp. in the Willamette Valley of western Oregon, followed by detection in Brassica juncea cover crops and on Brassica rapa weeds in northwestern Washington in 2016. Preliminary DNA sequence data and field observations suggest that isolates of the pathogen present in NA might be distinct from those in the UK, continental Europe, and OC. Comparisons of isolates from these regions using genetic (multilocus sequence analysis, MAT gene sequences, and rep-PCR DNA fingerprinting), pathogenic (B. rapa inoculation studies), biological (sexual compatibility), and morphological (colony and conidial morphology) analyses demonstrated two genetically distinct evolutionary lineages. Lineage 1 comprised isolates from the UK, continental Europe, and OC, and included the P. brassicae type specimen. Lineage 2 contained the NA isolates associated with recent disease outbreaks in the Pacific Northwest region of the USA. Symptoms caused by isolates of the two lineages on B. rapa and B. juncea differed, and therefore "chlorotic leaf spot" is proposed for the disease caused by Lineage 2 isolates of P. brassicae. Isolates of the two lineages differed in genetic diversity as well as sensitivity to the fungicides carbendazim and prothioconazole.

9.
Front Microbiol ; 11: 99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117129

RESUMO

Pseudocercospora musae, causal agent of Sigatoka leaf spot, or yellow Sigatoka disease, is considered a major pathogen of banana (Musa spp.). Widely disseminated in Brazil, this study explored the genetic diversity in field populations of the pathogen from production areas in the Distrito Federal and the States of Bahia, Minas Gerais, and Rio Grande do Norte. Resistance to demethylation inhibitor (DMI) fungicides was also examined. For 162 isolates from 10 banana growing regions, analysis of mating type idiomorph frequency was conducted, together with estimation of genetic diversity at 15 microsatellite loci. A total of 149 haplotypes were identified across the examined populations, with an average genetic diversity of 4.06. In general, populations displayed 1:1 proportions of idiomorphs MAT1-1 and MAT1-2, providing evidence for sexual recombination. Multilocus linkage disequilibrium also indicated asexual reproduction contributing to the genetic structure of certain populations. AMOVA revealed that 86.3% of the genetic differentiation of the pathogen occurred among isolates within populations. Discriminant Analysis of Principal Components (DAPC) identified six most probable genetic groups, with no population structure associated with geographic origin or collection site. Although genetic similarity was observed among certain populations from different states, data revealed increasing genetic differentiation with increasing geographic distance, as validated by Mantel's test (r = 0.19, P < 0.001). On the basis of DMI fungicide sensitivity testing and CYP51 gene sequence polymorphism, isolates from the Distrito Federal separated into two main groups, one with generally higher EC50 values against eight DMI fungicides. A clear phenotype-to-genotype relationship was observed for isolates carrying the CYP51 alteration Y461N. Conventionally adopted fungicides for control of Sigatoka leaf spot are likely to be overcome by combined sexual and asexual reproduction mechanisms in P. musae driving genetic variability. Continued analysis of pathogen genetic diversity and monitoring of DMI sensitivity profiles of Brazilian field populations is essential for the development of integrated control strategies based on host resistance breeding and rational design of fungicide regimes.

10.
Front Microbiol ; 11: 599233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384673

RESUMO

The evolution and spread of pan-azole resistance alleles in clinical and environmental isolates of Aspergillus fumigatus is a global human health concern. The identification of hotspots for azole resistance development in the wider environment can inform optimal measures to counteract further spread by minimizing exposure to azole fungicides and reducing inoculum build-up and pathogen dispersal. We investigated the fungicide sensitivity status of soil populations sampled from arable crops and the wider environment and compared these with urban airborne populations. Low levels of azole resistance were observed for isolates carrying the CYP51A variant F46Y/M172V/E427K, all belonging to a cluster of related cell surface protein (CSP) types which included t07, t08, t13, t15, t19, and t02B, a new allele. High levels of resistance were found in soil isolates carrying CYP51A variants TR34/L98H and TR46/Y121F/T289A, all belonging to CSP types t01, t02, t04B, or t11. TR46/Y121F/M172V/T289A/G448S (CSP t01) and TR46/Y121F/T289A/S363P/I364V/G448S (CSP t01), a new haplotype associated with high levels of resistance, were isolated from Dutch urban air samples, indicating azole resistance evolution is ongoing. Based on low numbers of pan-azole resistant isolates and lack of new genotypes in soils of fungicide-treated commercial and experimental wheat crops, we consider arable crop production as a coldspot for azole resistance development, in contrast to previously reported flower bulb waste heaps. This study also shows that, in addition to azole resistance, several lineages of A. fumigatus carrying TR-based CYP51A variants have also developed acquired resistance to methyl benzimidazole carbamate, quinone outside inhibitor and succinate dehydrogenase (Sdh) inhibitor fungicides through target-site alterations in the corresponding fungicide target proteins; beta-tubulin (F200Y), cytochrome b (G143A), and Sdh subunit B (H270Y and H270R), respectively. Molecular typing showed that several multi-fungicide resistant strains found in agricultural soils in this study were clonal as identical isolates have been found earlier in the environment and/or in patients. Further research on the spread of different fungicide-resistant alleles from the wider environment to patients and vice versa can inform optimal practices to tackle the further spread of antifungal resistance in A. fumigatus populations and to safeguard the efficacy of azoles for future treatment of invasive aspergillosis.

11.
Mycoses ; 62(9): 812-817, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31211900

RESUMO

BACKGROUND: Loop-mediated isothermal amplification (LAMP) assays, which operate at a single temperature and require no postreaction processing, have been described for rapid species-specific detection of numerous fungi. The technology has much less commonly been applied to identification of other key genetic traits such as fungicide resistance, and has not yet been applied to mating-type determination in any fungus. OBJECTIVES: To develop first LAMP assays for mating-type identification in a fungus, in this instance with the saprophytic mould and human opportunistic pathogen Aspergillus fumigatus, a heterothallic ascomycete requiring isolates of opposite mating type (MAT1-1, MAT1-2) for sexual reproduction. METHODS: New LAMP primer sets, targeted to MAT gene sequences, were screened against 34 A fumigatus isolates (of known mating type) from diverse clinical, environmental and geographic sources to establish whether they could distinguish MAT1-1 or MAT1-2 genotypes. RESULTS AND CONCLUSIONS: The new assays, operating at a single temperature of 65°C, correctly identified the mating type of A fumigatus isolates in <20 minutes, and thus have numerous research and practical applications. Similar MAT LAMP assays could now be developed for other fungi of agricultural, environmental, industrial and/or medical importance.


Assuntos
Aspergillus fumigatus/genética , Genes Fúngicos Tipo Acasalamento , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência de DNA , Temperatura
12.
Pestic Biochem Physiol ; 152: 138-147, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30497704

RESUMO

Fusarium head blight (FHB) is a destructive disease of small grain cereals with Fusarium graminearum as one of the most important causal agents. FHB not only can reduce yield and quality of grains, but also lead to accumulation of mycotoxins in grain, thereby threatening human and animal health. In this study, we observed that epoxiconazole exhibits strong inhibitory effects on both carbendazim-resistant and phenamacril-resistant isolates using mycelial growth inhibition assays. The artificially inoculated field trials further showed that epoxiconazole increased the control efficacy of FHB by being able to control carbendazim-resistant and phenamacril-resistant isolates. Epoxiconazole triggered DON production and Tri5 expression in vitro. However, in addition to increased FHB control efficacy and grain yield, decreased DON levels were measured in field trials after epoxiconazole applications. FHB control, grain yields and DON levels were significantly correlated with each other, suggesting that the visual disease rating can be used as an indicator of grain yields and mycotoxin contamination. Meanwhile, the frequency of carbendazim-resistant alleles in F. graminearum populations was dramatically reduced after epoxiconazole applications. In addition, epoxiconazole seed treatments had no effect on seed germination but phytotoxicity was apparent through growth inhibition of wheat seedlings. Overall, these findings of this study provide useful information for wheat protection programs against toxigenic fungi responsible for FHB and the consequent mycotoxin accumulation in grains.


Assuntos
Grão Comestível , Compostos de Epóxi/farmacologia , Fungicidas Industriais/farmacologia , Fusarium , Triazóis/farmacologia , Triticum , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Farmacorresistência Fúngica , Grão Comestível/efeitos dos fármacos , Grão Comestível/microbiologia , Grão Comestível/fisiologia , Doenças das Plantas/prevenção & controle , Tricotecenos/metabolismo , Triticum/efeitos dos fármacos , Triticum/microbiologia , Triticum/fisiologia
13.
Plant Dis ; 102(10): 2016-2024, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30133354

RESUMO

Optimal disease management depends on the ability to monitor the development of fungicide resistance in plant pathogen populations. Benzimidazole resistance is caused by the point mutations of the ß-tubulin gene in Botrytis cinerea, and three mutations (E198A, E198K, and E198V) at codon 198 account for more than 98% of all resistant strains. Although traditional methods remain a cornerstone in monitoring fungicide resistance, molecular methods that do not require the isolation of pathogens can detect resistance alleles present at low frequencies, and require less time and labor than traditional methods. In this study, we present an efficient, rapid, and highly specific method for detecting highly benzimidazole-resistant B. cinerea isolates based on loop-mediated isothermal amplification (LAMP). By using specific primers, we could simultaneously detect all three resistance-conferring mutations at codon 198. The LAMP reaction components and conditions were optimized, and the best reaction temperatures and times were 60 to 62°C and 45 min, respectively. When B. cinerea field isolates were assessed for benzimidazole resistance, similar results were obtained with LAMP, minimal inhibition concentration, and sequencing. The LAMP assay developed in the current study was highly suitable for detection of highly benzimidazole-resistant field isolates of B. cinerea.


Assuntos
Benzimidazóis/farmacologia , Botrytis/efeitos dos fármacos , Farmacorresistência Fúngica , Variação Genética , Tubulina (Proteína)/genética , Anti-Helmínticos/farmacologia , Técnicas de Amplificação de Ácido Nucleico
14.
EFSA J ; 16(1): e05114, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625665

RESUMO

The Plant Health Panel reviewed the paper by Guarnaccia et al. (2017) and compared their findings with previous predictions on the establishment of Phyllosticta citricarpa. Four species of Phyllosticta were found by Guarnaccia et al. (2017) in Europe. P. citricarpa and P. capitalensis are well-defined species, with P. citricarpa recorded for the first time in Europe, confirming predictions by Magarey et al. (2015) and EFSA (2008, 2014, 2016) that P. citricarpa can establish in some European citrus-growing regions. Two new species P. paracitricarpa and P. paracapitalensis were also described, with P. paracitricarpa (found only in Greece) shown to be pathogenic on sweet orange fruits. Genotyping of the P. citricarpa isolates suggests at least two independent introductions, with the population in Portugal being different from that present in Malta and Italy. P. citricarpa and P. paracitricarpa were isolated only from leaf litter in backyards. However, since P. citricarpa does not infect or colonise dead leaves, the pathogen must have infected the above living leaves in citrus trees nearby. Guarnaccia et al. (2017) considered introduction to be a consequence of P. citricarpa having long been present or of illegal movement of planting material. In the Panel's view, the fruit pathway would be an equally or more likely origin. The authors did not report how surveys for citrus black spot (CBS) disease were carried out, therefore their claim that there was no CBS disease even where the pathogen was present is not supported by the results presented. From previous simulations, the locations where Guarnaccia et al. (2017) found P. citricarpa or P. paracitricarpa were conducive for P. citricarpa establishment, with number of simulated infection events by pycnidiospores comparable to sites of CBS occurrence outside Europe. Preliminary surveys by National Plant Protection Organisations (NPPOs) have not confirmed so far the findings by Guarnaccia et al. (2017) but monitoring is still ongoing.

15.
Pest Manag Sci ; 74(2): 302-313, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28881414

RESUMO

BACKGROUND: Insensitivity of Zymoseptoria tritici to demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) fungicides has been widely reported from laboratory studies, but the relationships between laboratory sensitivity phenotype or target site genotype and field efficacy remain uncertain. This article reports field experiments quantifying dose-response curves, and investigates the relationships between field performance and in vitro half maximal effective concentration (EC50 ) values for DMIs, and the frequency of the G143A substitution conferring QoI resistance. RESULTS: Data were analysed from 83 field experiments over 21 years. Response curves were fitted, expressed as percentage control, rising towards an asymptote with increasing dose. Decline in DMI efficacy over years was associated with a decrease in the asymptote, and reduced curvature. Field ED50 values were positively related to in vitro EC50 values for isolates of Z. tritici collected over a 14-year period. Loss of QoI efficacy was expressed through a change in asymptote. Increasing frequency of G143A was associated with changes in field dose-response asymptotes. CONCLUSION: New resistant strains are often detected by resistance monitoring and laboratory phenotyped/genotyped before changes in field performance are detected. The relationships demonstrated here between laboratory tests and field performance could aid translation between laboratory and field for other fungicide groups. © 2017 Society of Chemical Industry.


Assuntos
Ascomicetos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Estrobilurinas/farmacologia , Ascomicetos/genética , Desmetilação , Relação Dose-Resposta a Droga , Fungicidas Industriais/química , Genótipo , Fenótipo , Estrobilurinas/química
16.
Pest Manag Sci ; 74(3): 672-681, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29024365

RESUMO

BACKGROUND: A new generation of more active succinate dehydrogenase (Sdh) inhibitors (SDHIs) is currently widely used to control Septoria leaf blotch in northwest Europe. Detailed studies were conducted on Zymoseptoria tritici field isolates with reduced sensitivity to fluopyram and isofetamid; SDHIs which have only just or not been introduced for cereal disease control, respectively. RESULTS: Strong cross-resistance between fluopyram and isofetamid, but not with other SDHIs, was confirmed through sensitivity tests using laboratory mutants and field isolates with and without Sdh mutations. The sensitivity profiles of most field isolates resistant to fluopyram and isofetamid were very similar to a lab mutant carrying SdhC-A84V, but no alterations were found in SdhB, C and D. Inhibition of mitochondrial Sdh enzyme activity and control efficacy in planta for those isolates was severely impaired by fluopyram and isofetamid, but not by bixafen. Isolates with similar phenotypes were not only detected in northwest Europe but also in New Zealand before the widely use of SDHIs. CONCLUSION: This is the first report of SDHI-specific non-target site resistance in Z. tritici. Monitoring studies show that this resistance mechanism is present and can be selected from standing genetic variation in field populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ascomicetos/efeitos dos fármacos , Resistência a Medicamentos/genética , Fungicidas Industriais/farmacologia , Variação Genética , Succinato Desidrogenase/antagonistas & inibidores , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
17.
Evol Appl ; 10(10): 1055-1066, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29151860

RESUMO

Fungicide resistance is a constant threat to agricultural production worldwide. Molecular mechanisms of fungicide resistance have been studied extensively in the wheat pathogen Zymoseptoria tritici. However, less is known about the evolutionary processes driving resistance development. In vitro evolutionary studies give the opportunity to investigate this. Here, we examine the adaptation of Z. tritici to fluxapyroxad, a succinate dehydrogenase (Sdh) inhibitor. Replicate populations of Z. tritici derived from the sensitive isolate IPO323 were exposed to increasing concentrations of fluxapyroxad with or without UV mutagenesis. After ten increases in fungicide concentration, sensitivity had decreased dramatically, with replicate populations showing similar phenotypic trajectories. Sequencing the Sdh subunit B, C, and D encoding genes identified seven mutations associated with resistance to fluxapyroxad. Mutation frequency over time was measured with a pyrosequencing assay, revealing sequential lineage replacement in the UV-mutagenized populations but not in the untreated populations. Repeating selection from set time-points with different fungicide concentrations revealed that haplotype replacement of Sdh variants was driven by dose-dependent selection as fungicide concentration changed, and was not mutation-limited. These findings suggest that fungicide field applications may select for highly insensitive Sdh variants with higher resistance factors if the fungicide concentration is increased to achieve a better disease control. However, in the absence or presence of lower fungicide concentrations, the spread of these strains might be restricted if the underlying Sdh mutations carry fitness penalties.

18.
Sci Rep ; 7(1): 15849, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158527

RESUMO

Lanosterol 14-α demethylase is a key enzyme intermediating the biosynthesis of ergosterol in fungi, and the target of azole fungicides. Studies have suggested that Leptosphaeria maculans and L. biglobosa, the causal agents of phoma stem canker on oilseed rape, differ in their sensitivity to some azoles, which could be driving pathogen frequency change in crops. Here we used CYP51 protein modelling and heterologous expression to determine whether there are interspecific differences at the target-site level. Moreover, we provide an example of intrinsic sensitivity differences exhibited by both Leptosphaeria spp. in vitro and in planta. Comparison of homologous protein models identified highly conserved residues, particularly at the azole binding site, and heterologous expression of LmCYP51B and LbCYP51B, with fungicide sensitivity testing of the transformants, suggests that both proteins are similarly sensitive to azole fungicides flusilazole, prothioconazole-desthio and tebuconazole. Fungicide sensitivity testing on isolates shows that they sometimes have a minor difference in sensitivity in vitro and in planta. These results suggest that azole fungicides remain a useful component of integrated phoma stem canker control in the UK due to their effectiveness on both Leptosphaeria spp. Other factors, such as varietal resistance or climate, may be driving observed frequency changes between species.


Assuntos
Ascomicetos/genética , Azóis/química , Brassica/genética , Sistema Enzimático do Citocromo P-450/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Azóis/farmacologia , Sítios de Ligação , Brassica/química , Brassica/microbiologia , Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Silanos/química , Silanos/farmacologia , Esterol 14-Desmetilase/genética , Triazóis/química , Triazóis/farmacologia
19.
Front Microbiol ; 7: 1814, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895632

RESUMO

When a new fungicide class is introduced, it is useful to anticipate the resistance risk in advance, attempting to predict both risk level and potential mechanisms. One tool for the prediction of resistance risk is laboratory selection for resistance, with the mutational supply increased through UV or chemical mutagenesis. This enables resistance to emerge more rapidly than in the field, but may produce mutations that would not emerge under field conditions. The methyl benzimidazole carbamates (MBCs) were the first systemic single-site agricultural fungicides, and the first fungicides affected by rapid evolution of target-site resistance. MBC resistance has now been reported in over 90 plant pathogens in the field, and laboratory mutants have been studied in nearly 30 species. The most common field mutations, including ß-tubulin E198A/K/G, F200Y and L240F, have all been identified in laboratory mutants. However, of 28 mutations identified in laboratory mutants, only nine have been reported in the field. Therefore, the predictive value of mutagenesis studies would be increased by understanding which mutations are likely to emerge in the field. Our review of the literature indicates that mutations with high resistance factors, and those found in multiple species, are more likely to be reported in the field. However, there are many exceptions, possibly due to fitness penalties. Whether a mutation occurred in the same species appears less relevant, perhaps because ß-tubulin is highly conserved so functional constraints are similar across all species. Predictability of mutations in other target sites will depend on the level and conservation of constraints.

20.
Pest Manag Sci ; 72(8): 1449-59, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27148866

RESUMO

Evolved resistance to fungicides is a major problem limiting our ability to control agricultural, medical and veterinary pathogens and is frequently associated with substitutions in the amino acid sequence of the target protein. The convention for describing amino acid substitutions is to cite the wild-type amino acid, the codon number and the new amino acid, using the one-letter amino acid code. It has frequently been observed that orthologous amino acid mutations have been selected in different species by fungicides from the same mode of action class, but the amino acids have different numbers. These differences in numbering arise from the different lengths of the proteins in each species. The purpose of the present paper is to propose a system for unifying the labelling of amino acids in fungicide target proteins. To do this we have produced alignments between fungicide target proteins of relevant species fitted to a well-studied 'archetype' species. Orthologous amino acids in all species are then assigned numerical 'labels' based on the position of the amino acid in the archetype protein. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/química , Fungicidas Industriais , Proteínas Fúngicas/genética , Mutação , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...